

1 au: a step toward the universe ideas from JAHOU

Toshihiro Handa

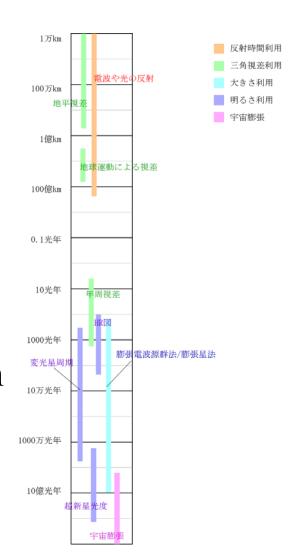
Kagoshima Univ./JAHOU

Measure images!

- FITS image + image processing software
- Makalii, Salsa-J

- inquiry based, active learning
- citizen's science

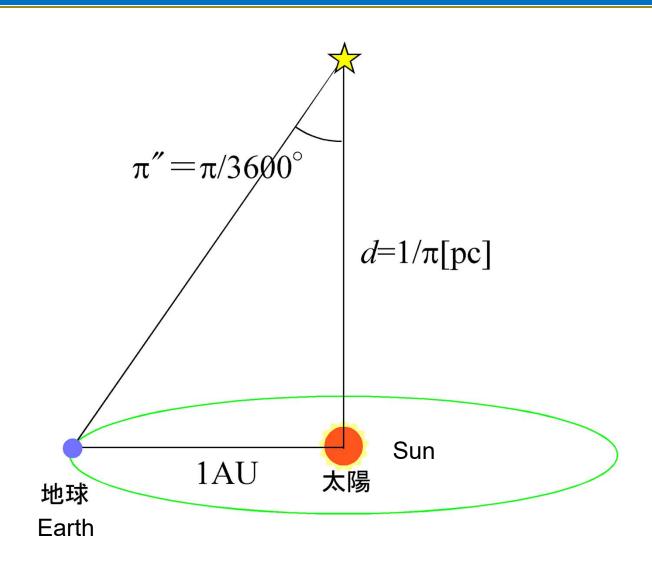
topic told at GHOU2013


- An old ideas but still valuable.
- History to measure 1 au
 - 1716: Halley proposes Venus transit obs.
 - 1761: 1st coordinated astron. obs. over the world
 - 1769: got the value as 1.53x10⁸ km
 - 150 yrs before IAU established

Distance to celestial objects

Distance estimation

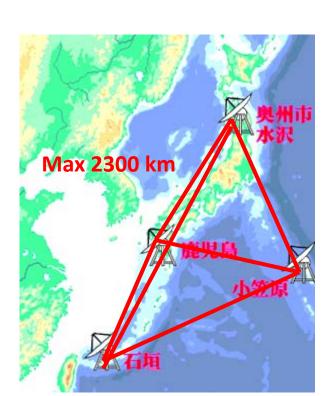
- The biggest issue in astronomy
- The distance scale ladder
 - annual parallax
 - eclipsing binary
 - Cepheid, Mira
 - HR diagram: photometric distance
 - Tully-Fisher/Faber-Jackson relation
 - Ia SN
 - etc.



Distance estimation

- To give an actual physical parameters
 - mass, size, energy
 - size ~ *d*
 - mass $\sim d^2$, d^3
 - energy $\sim d^2$, d^3
- Annual parallax is the starting point.

Annual parallax



In a cutting-edge astronomy

- Direct measurements of annual parallax
- VERA
 - VLBI exploration of Radio Astrometry
- Hipparcos, Gaia

Importance to get 1 AU

- How to connect between km and AU
 - not only the traditional/current way
 - many methods
 - use the actual data
- It is a HOU way!

ideas

A) Venus transit

simpler way than Halley's

B) Spin of the Sun

a part of JAHOU spectrum curricula

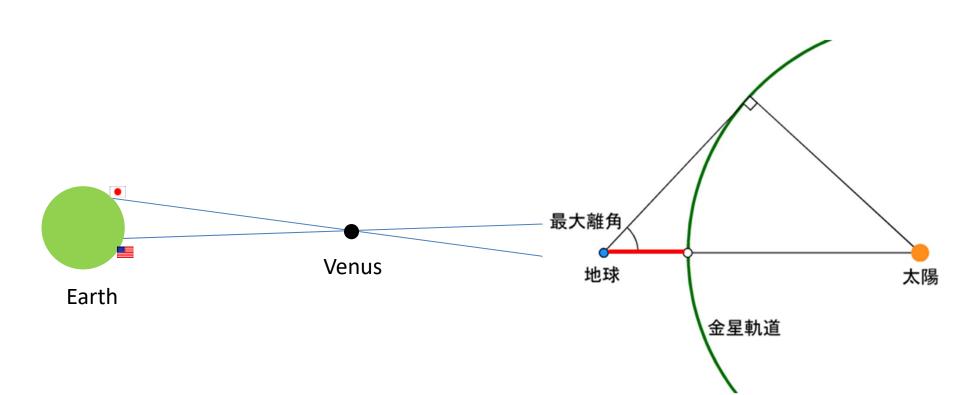
C) modulation of periodic phenomena

■ Inverse use of Rømer's light speed measurement

D) Annual aberration

Idea A) Venus transit for AU

The Venus transit!


- Parallax of Venus in front of the Sun
- Estimate the distance to Venus

- It should be about 15" for 3000 km baseline.
- Across a continent or an ocean

Simultaneous observations

- Similar observations as a solar eclipse
- More direct procedure than Halley's

A "standard" procedure

The distance to Venus

- 1. Measure the parallax using FITS images
- 2. Measure the baseline length at that time

The ratio of orbital radii

- 3. Measure the maximum separation of Venus
- 4. Measure the ratio of Earth and Venus orbit radii

Idea B) Spin of the Sun for AU

A part of JAHOU spectrum

Spin rotation velocity from spectra

- 1. Solar spectra in E-W edges
- 2. Rotation velocity using Doppler effect

Rotation period

3. Rotation period from sun spot obs.

Sun Radius

- 4. Round trip length by $l=T_{\text{rot}} v_{\text{rot}}$
- 5. Sun radius from $R=l/(2\pi)$

Apparent size distance

- 6. Apparent Sun radius θ =0.5deg
- 7. 1 au from $d=R/\theta$

Idea C) Rømer's method

Rømer's method for c

- Lite speed by light travel across 1AU
- Using timing clock by Jupiter satellites
- We can measure c in these days.
- Use this method inverse direction

Period measurements

Period measurement using Makalii

- 1. Eclipse timing and period of a Jupiter's satellite
- 2. measure them in different seasons

Light traveling time difference

- 3. Derived the modulation by Earth motion
- 4. Measure the light traveling time difference T_{travel}

Light traveling distance difference

- 5. Difference of light traveling distance $l=T_{\text{travel}} c$
- 6. Locations of Earth and Jupiter on SSSim
- 7. Distance *l* in au; about 2au for a half year

extension

- A Periodic variable : another candidate
- The best target
 - short period variables; $T \sim$ several days
 - near the ecliptic plane

Idea D)

Abberation measurement

aberration

Measure the annual aberration

- 1. Aberration angle θ
 - Problem: How to do it?

Orbital speed of Earth

- 2. Orbital speed is estimated by $v=c \theta$
 - $\theta \, v/c = 10^{-4} \, \text{rad} = 20$ "

Orbit length

- 3. Orbit length $l=T_{yr}$ v, where $T_{yr}=1$ year in sec.
- Radius of Earth orbit
 - 4. Orbit radius from $R=l/(2\pi)$
- Problem: How to measure it?

New ideas!

- Please give new ideas!
- Collect good ideas!
- A new chapter in the GHOU textbook!