A counterfactual is a conditional statement representing what would be the case if its premise were true (but it is not true in fact). “If COMMA 2014 were not held in Scotland, you would not be here now.”

A formal model of counterfactuals has been studied by Stalnaker (1968) and Lewis (1973) based on the possible world semantics.

Counterfactuals are popularly used in dialogue, argument or dispute, while little attention has been paid on it in formal argumentation.

The purpose of this study is to provide an argumentation-theoretic interpretation of counterfactuals.
Let U be the **universe** of all possible arguments. An **argumentation framework (AF)** is a pair (Ar, att) where Ar is a finite subset of U and $att \subseteq Ar \times Ar$. An argument A **attacks** an argument B iff $(A,B) \in att$.

- **A indirectly attacks** (resp. **indirectly defends**) B if there is an odd-length (resp. even-length, non-zero) path from A to B in a directed graph associated with AF.

- A **labelling** of AF is a function $L: Ar \rightarrow \{ in, out, undec \}$.

- **Complete, (semi-)stable, grounded,** and **preferred labelling** are defined as usual. We simply say “labelling” to indicate one of these 5 labellings.
COUNTERFACTUAL REASONING IN ARGUMENTATION FRAMEWORK

“If A were rejected, then B would be accepted.”
“If A were rejected, then C would be rejected.”
“If B were accepted, then C would be rejected.”

Modify AF to AF’ in a way that
an argument A that is accepted in AF is rejected in AF’;
or an argument B that is rejected in AF is accepted in AF’.
MODIFICATION OF AF

Let $AF=(Ar, att)$ and $A \in Ar$. Define

$$AF^c_{+_A} = (Ar, att \setminus \{(X, A) | X \in Ar\})$$

(removing every attack relation attacking A)

$$AF^c_{-_A} = (Ar \cup \{X\}, att \cup \{(X,A)\}) \text{ where } X \in U \setminus Ar \text{ and } U \setminus Ar \neq \emptyset$$

(introducing an argument that attacks A)

- $\mathcal{L}(A)=in$ for every labelling \mathcal{L}, if any, in $AF^c_{+_A}$

- $\mathcal{L}(A)=out$ for every labelling \mathcal{L}, if any, in $AF^c_{-_A}$

- $AF^c_{+_A}$ and $AF^c_{-_A}$ are simply written AF^c if an argument A is clear in the context.
COUNTERFACTUALS (CF) IN AF

Let $AF = (Ar, att)$ and $A, B \in Ar$, and $\ell \in \{\text{in, out}\}$. Define

- $\text{in}(A) \square \to \ell(B)$ is true in AF if $\mathcal{L}(B) = \ell$ in every labelling \mathcal{L} of AF^c_{+A}
- $\text{in}(A) \lozenge \to \ell(B)$ is true in AF if $\mathcal{L}(B) = \ell$ in some labelling \mathcal{L} of AF^c_{+A}
- $\text{out}(A) \square \to \ell(B)$ is true in AF if $\mathcal{L}(B) = \ell$ in every labelling \mathcal{L} of AF^c_{-A}
- $\text{out}(A) \lozenge \to \ell(B)$ is true in AF if $\mathcal{L}(B) = \ell$ in some labelling \mathcal{L} of AF^c_{-A}

where "labelling" means one of the 5 labellings of AF.

- $\text{in}(A) \square \to \text{in}(B)$ is read "if A were accepted then B would be accepted."
- $\text{in}(A) \square \to \text{out}(B)$ is read "if A were accepted then B would be rejected."
- $\text{in}(A) \lozenge \to \text{in}(B)$ is read "if A were accepted then B might be accepted."
- $\text{in}(A) \lozenge \to \text{out}(B)$ is read "if A were accepted then B might be rejected."
EXAMPLE

- **AF** has the complete labelling: \{ *in*(A), *out*(B), *in*(C), *out*(D), *out*(E) \}.

- The following CFs hold in **AF**:

 - *out*(A) □→ *in*(B)
 - *in*(B) □→ *out*(C)
 - *out*(C) ◇→ *in*(D)
 - *out*(C) ◇→ *out*(E)
 - *out*(C) ◇→ *in*(E)
FORMAL PROPERTIES (1)

Let $AF=(Ar, att)$ and $A, B \in Ar$, and $\ell \in \{ \text{in, out} \}$.

- $\ell_1(A) \Box \rightarrow \ell_2(B)$ implies $\ell_1(A) \lozenge \rightarrow \ell_2(B)$

- CFs are reflexive:
 - $\ell(A) \Box \rightarrow \ell(A)$ is true in AF.
 - $\ell(A) \lozenge \rightarrow \ell(A)$ is true in AF whenever AF^c has a labelling.

- CFs with true antecedent:
 - If $\mathcal{L}(A) = \ell_1$ and $\mathcal{L}(B) = \ell_2$ in every complete labelling \mathcal{L} of AF, then $\ell_1(A) \Box \rightarrow \ell_2(B)$ is true in AF.
 - If $\mathcal{L}(A) = \ell_1$ in every complete labelling \mathcal{L} of AF and $\mathcal{L}(B) = \ell_2$ in some complete labelling \mathcal{L} of AF, then $\ell_1(A) \lozenge \rightarrow \ell_2(B)$ is true in AF.
FORMAL PROPERTIES (2)

- **Modus Ponens:**
 - If $\mathcal{L}(A) = \ell_1$ in every complete labelling \mathcal{L} of AF and $\ell_1(A) \square \rightarrow \ell_2(B)$ is true in AF, then $\mathcal{L}'(B) = \ell_2$ in every complete labelling \mathcal{L}' of AF.
 - If $\mathcal{L}(A) = \ell_1$ in every complete labelling \mathcal{L} of AF and $\ell_1(A) \lozenge \rightarrow \ell_2(B)$ is true in AF, then $\mathcal{L}'(B) = \ell_2$ in some complete labelling \mathcal{L}' of AF.

- **Modus Tollens:**
 If $\ell_1(A) \square \rightarrow \ell_2(B)$ is true in AF and $\mathcal{L}(B) \neq \ell_2$ for any complete labelling \mathcal{L} of AF, then $\mathcal{L}'(A) \neq \ell_1$ for any complete labelling \mathcal{L}' of AF.

- **Others**
 - If $\ell_1(A) \square \rightarrow \ell_2(B)$ is true in AF, then $\ell_1(A) \lozenge \rightarrow \ell_2(B)$ is true in AF.
 - If $\ell_1(A) \lozenge \rightarrow \ell_2(B)$ is true in AF, then $\ell_1(A) \triangle \rightarrow \ell_2(B)$ is true in AF.

where $\overline{\ell}$ is “out” (resp. “in”) if ℓ is “in” (resp. “out”).
COUNTERFACTUAL FALLACIES

- Fallacy of strengthening the antecedent:

\[\ell_1 (A) \square \rightarrow \ell_2 (B) \] in AF does not imply \[\ell_1 (A) \land \ell_3 (C) \square \rightarrow \ell_2 (B) \] in AF in general.

- Fallacy of transitivity:

\[\ell_1 (A) \square \rightarrow \ell_2 (B) \] and \[\ell_2 (B) \square \rightarrow \ell_3 (C) \] in AF do not imply \[\ell_1 (A) \square \rightarrow \ell_3 (C) \] in AF in general.

- Fallacy of contraposition:

\[\ell_1 (A) \square \rightarrow \ell_2 (B) \] in AF does not imply \[\ell_2 (B) \square \rightarrow \ell_1 (A) \] in AF in general.

The above results also hold by replacing \(\square \rightarrow \) with \(\diamond \rightarrow \).
COUNTERFACTUAL DEPENDENCIES

- "An event φ depends causally on another event ψ iff both $\varphi \square \rightarrow \psi$ and $\neg \varphi \square \rightarrow \neg \psi$ hold" (Lewis 1973).

- Counterfactual dependencies

 $\ell_1 (A) \square^c \rightarrow \ell_2 (B)$ is true in AF
 if both $\ell_1 (A) \square \rightarrow \ell_2 (B)$ and $\ell_1 (A) \square \rightarrow \ell_2 (B)$ hold in AF
 where $\ell_1, \ell_2 \in \{ \text{in, out} \}$.

- Formal properties

 - $\ell_1 (A) \square^c \rightarrow \ell_2 (B)$ implies $\ell_1 (A) \square \rightarrow \ell_2 (B)$, but not vice versa.
 - If $\ell (A) \square \rightarrow \ell (B)$ is true in AF, then A indirectly defends B.
 - If $\ell (A) \square^c \rightarrow \ell (B)$ is true in AF, then A indirectly attacks B.
PREEMPTION

- $\text{in}(A) \square \rightarrow \text{out}(B)$ but $\text{out}(A) \square \downarrow \rightarrow \text{in}(B)$ imply $\text{in}(A) \square \rightarrow \text{out}(B)$

- $\text{in}(C) \square \rightarrow \text{out}(B)$ but $\text{out}(C) \square \downarrow \rightarrow \text{in}(B)$ imply $\text{in}(C) \square \rightarrow \text{out}(B)$

- Thus $\text{out}(B)$ causally depends on neither $\text{in}(A)$ nor $\text{in}(C)$.

- The existence of A is the actual cause of rejecting B. On the other hand, if A were rejected then C would be accepted, which results in rejecting B. Thus, C is a “potential” alternative cause of rejecting B.

- $\text{in}(C) \square \rightarrow \text{out}(B)$ represents that $\text{in}(C)$ is a potential cause of $\text{out}(B)$ but is preempted by the actual cause $\text{in}(A)$.
MODAL INTERPRETATION

- □ℓ(A) \text{ def } ℓ(A) \square \rightarrow \text{in}(⊥) \quad \text{and} \quad ◇ℓ(A) \text{ def } ℓ(A) \square \neg \rightarrow \text{in}(⊥)

- For instance, □\text{in}(A) ("A is necessarily accepted")
 iff out(A) \square \rightarrow \text{in}(⊥)
 ("inconsistency would be accepted if A were rejected")

- Example

A=\("\sqrt{2} \text{ is an irrational number}\"

The validity of the argument A is proven by showing inconsistency under the assumption that \(\sqrt{2}\) were a rational number.

⇒ □\text{in}(A) is proved by showing out(A) \square \rightarrow \text{in}(⊥)\)
COMPLEXITY

- Given an AF, the problem of deciding whether $\text{in}(A) \square \rightarrow \ell(B)$ (resp. $\text{in}(A) \diamond \rightarrow \ell(B)$) holds or not in AF is equivalent to deciding whether $L(B) = \ell$ in every (resp. some) labelling L of AF_{c+A}^c.

- Likewise, deciding whether $\text{out}(A) \square \rightarrow \ell(B)$ (resp. $\text{out}(A) \diamond \rightarrow \ell(B)$) holds or not in AF is equivalent to deciding whether $L(B) = \ell$ in every (resp. some) labelling L of AF_{c-A}^c.

- Therefore, complexities of CF under the operator $\square \rightarrow$ (resp. $\diamond \rightarrow$) are equivalent to those of skeptical (resp. credulous) reasoning of an argument under argumentation semantics.
POTENTIAL APPLICATIONS

- CFs are popularly used in dialogue or dispute, so the framework would be useful for realizing CF reasoning in dialogue systems based on AF.

- CFs are used in diagnosis in which assumptions are introduced for explaining the observed misbehavior of a device. Thus, CFs could be used for analytic tools in AF.

- When one wants to have a desired outcome which would not be achieved by true arguments, one would reason counterfactually. In this case, CFs would be used for building false arguments in debate/discussion games.

- CF studied here is based on abstract AF and it will be applied to instantiated AFs based on particular representation languages.