Comparing Abductive Theories

Katsumi Inoue
National Institute of Informatics

Chiaki Sakama
Wakayama University

ECAI 2008
Computational issues on abductive reasoning

- Abduction is used in many AI applications, e.g., diagnosis, design, discovery.
- Abduction is an important paradigm for problem solving, and is incorporated in programming technologies, viz, abductive logic programming (ALP).
- Automated abduction is also studied in the literature as an extension of deductive methods or a part of inductive systems.
Comparing non-deductive capabilities between programs

- Intelligent agents perform non-deductive commonsense reasoning as well as deductive reasoning.
- Comparing capabilities of non-deductive reasoning such as abduction and induction is meaningful to measure intelligence of agents.
- Inoue and Sakama [IJ CAI-05] defined two notions of abductive equivalence --- explainable/explanatory equivalence.
Comparison of abductive theories

- Evaluation of **abductive power** in ALP.
- **Refinement** and **revision** in ALP.
- **Equivalence** of abductive theories [IS05].
 - optimization, debugging, simplification, verification

- Relations between abductive agents.
- Software development of abductive theories.

- Comparison of **inductive theories** also involves similar computational issues.
When is an abductive theory stronger than another abductive theory?

- No definition in the literature of ALP.

- In what circumstances, can we say that abduction by agent A is stronger than abduction by agent B?
- When can we regard that abduction with knowledge P is stronger than abduction with knowledge Q?
- When can we regard that abduction with hypotheses M is stronger than abduction with hypotheses N?
- How about the relation between abductive theories (P,M) and (Q,N)?
Considerable parameters

- World
 - background knowledge
 - observations

- Agent who performs abduction
 - her logic of background knowledge
 - language, syntax
 - semantics
 - axioms, inference procedure
 - her logic of hypotheses/observation
 - language, syntax
 - logic of explanation entailment
 - criteria of best explanations
Abductive framework

- (L, B, H)
 - L: language / logic
 - B: background knowledge
 - H: candidate hypotheses

- Given an observation O, E is an explanation of O in (L, B, H) iff E belongs to H ($E \subseteq H$) and $B \cup E \vdash_L O$.
 - $B \cup E$ is consistent.

- When O has an explanation in (L, B, H), O is explainable in (L, B, H).
Abductive generality: First Definition

- Let \((L, B_1, H_1)\) and \((L, B_2, H_2)\) be abductive frameworks.

- \((L, B_1, H_1)\) is more (or equally) explainable than \((L, B_2, H_2)\) iff, for any observation \(O\), if \(O\) is explainable in \((L, B_1, H_1)\) then \(O\) is explainable in \((L, B_2, H_2)\).

- Explainable generality requires that one abductive framework has more explainability than another abductive framework for any observation.

📖 Note: \(L\) must be common when comparing frameworks.
Abductive generality:
Second Definition

- Let \((\mathcal{L}, B_1, H_1)\) and \((\mathcal{L}, B_2, H_2)\) be abductive frameworks.

- \((\mathcal{L}, B_1, H_1)\) is more (or equally) explanatory than \((\mathcal{L}, B_2, H_2)\) iff, for any observation \(O\), any explanation of \(O\) in \((\mathcal{L}, B_1, H_1)\) is also an explanation of \(O\) in \((\mathcal{L}, B_2, H_2)\).

- Explanatory generality assures that one abductive framework has more explanation power (explanation contents) than another for any observation.

- Explanatory generality implies explainable generality.

Note: \(\mathcal{L}\) must be common.
Example

A₁ = (FOL, B₁, {s,r}) and A₂ = (FOL, B₂, {s,r}) where
B₁: s → g
B₂: s → g, r → g

A₁ and A₂ are explainably equivalent. That is, A₁ is more
or equally explainable than A₂, and vice versa.

A₁ and A₂ are not explanatorily equivalent.

A₂ is more explanatory than A₁, but not vice versa.

A₃ = (FOL, B₁, {r}) and A₄ = (FOL, B₂, {r}) are not
explainably equivalent.
Example

\[A_1 = (LP, B_1, \{a,b\}), \quad A_2 = (LP, B_2, \{a,b\}) \]

- \[B_1 : \quad p \leftarrow a, \quad a \leftarrow b \]
- \[B_2 : \quad p \leftarrow a, \quad p \leftarrow b \]

\[A_1 \] and \[A_2 \] are explainably equivalent. That is, \[A_1 \] is more or equally explainable than \[A_2 \], and vice versa.

\[A_1 \] and \[A_2 \] are not explanatorily equivalent.

Actually \{b\} is an explanation of a in \[A_1 \] but is not in \[A_2 \].

\[A_1 \] is more explanatory than \[A_2 \], but not vice versa.
Results in first-order logic

- **Definition** [Reiter, Poole]: An extension of (FOL, B, H) is $Th(B \cup S)$, where S is a maximal subset of H such that $B \cup S$ is consistent.

- The set of all extensions of A is denoted as $\text{Ext}(A)$.

- **Lemma** [Poole]: O is explainable in (FOL, B, H) iff there is an extension of (FOL, B, H) in which O is true.

- **Theorem**: A_1 is more explainable than A_2 iff, for any $X_2 \in \text{Ext}(A_2)$, there is $X_1 \in \text{Ext}(A_1)$ such that $X_1 \supseteq X_2$.

- **Theorem**: $A_1 = (\text{FOL}, B_1, H_1)$ is more explanatory than $A_2 = (\text{FOL}, B_2, H_2)$ iff $B_1 \models B_2$ and A_1 is more explainable than A_2.
Results in first-order logic

- **Theorem:** \(A_1 = (\text{FOL}, B_1, H_1) \) and \(A_2 = (\text{FOL}, B_2, H_2) \) are explainably equivalent iff \(\text{Ext}(A_1) = \text{Ext}(A_2) \).

- **Corollary:** If \(B_1 \equiv B_2 \) then \((\text{FOL}, B_1, H) \) and \((\text{FOL}, B_2, H) \) are explainably equivalent.

- **Theorem:** \(A_1 = (\text{FOL}, B_1, H) \) and \(A_2 = (\text{FOL}, B_2, H) \) are explanatorily equivalent iff \(B_1 \equiv B_2 \) and \(A_1 \) and \(A_2 \) are explainably equivalent.
Subclasses in first-order logic

- **Theorem (Assumption-freeness):** \((\text{FOL}, B_1, \emptyset)\) is more explainable than \((\text{FOL}, B_2, \emptyset)\) iff \(B_2 \models B_1\).

- **Theorem (Semi-monotonicity):** Suppose two abductive frameworks with the same background knowledge, \(A_1 = (\text{FOL}, B, H_1)\) and \(A_2 = (\text{FOL}, B, H_2)\). If \(H_1 \supseteq H_2\) then \(A_1\) is more explainable than \(A_2\) and is more explanatory than \(A_2\).

Note: \(B_1 \models B_2\) does not imply that \((\text{FOL}, B_1, H)\) is more explainable than \((\text{FOL}, B_2, H)\).
Abductive Logic Programs (ALP)

(LP, B, H): abductive framework where
 - B: logic program (GEDP)
 - H: set of abducibles (literals)

G: observation (a conjunction of ground literals)

$E \subseteq H$ is a credulous explanation of G in (LP, B, H) if all literals in G are true in a consistent answer set of $B \cup E$.
Results in abductive logic programs

Definition [IS]: A belief set of \((LP, B, H)\) (wrt \(E\)) is a consistent answer set of \(B \cup E\) where \(E \subseteq H\).

When a belief set \(S\) is an answer set of \(B \cup E\), \(S\) is also denoted as \(S_E\).

The set of all belief sets of \(A\) is denoted as \(BS(A)\).

Theorem: \(A_1 = (LP, B_1, H_1)\) is more explainable than \(A_2 = (LP, B_2, H_2)\) iff, for any \(S_2 \in BS(A_2)\), there is \(S_1 \in BS(A_1)\) such that \(S_1 \supseteq S_2\).

Theorem: \(A_1 = (LP, B_1, H_1)\) is more explanatory than \(A_2 = (LP, B_2, H_2)\) iff, for any \(E \subseteq H_2\) and \(S_E \in BS(A_2)\), there is \(T_E \in BS(A_1)\) such that \(E \subseteq H_1\) and \(T_E \supseteq S_E\).
Results in abductive logic programs

- **Theorem:** $A_1 = (LP, B_1, H_1)$ and $A_2 = (LP, B_2, H_2)$ are explainably equivalent iff $\max(\text{BS}(A_1)) = \max(\text{BS}(A_2))$.

- **Theorem:** $A_1 = (LP, B_1, H_1)$ and $A_2 = (LP, B_2, H_2)$ are explanatorily equivalent iff $C_1 = C_2$ and
 \[
 \max(\text{AS}(B_1 \cup E)) = \max(\text{AS}(B_2 \cup E)) \text{ for any } E \in C_i,
 \]
 where $C_i = \{ E \subseteq H_i \mid B_i \cup E \text{ is consistent} \}$ for $i=1,2$.
Results in abductive logic programs

- **Definition** [IS04]: Let \mathcal{R} be a set of rules. Two programs P_1 and P_2 are **strongly equivalent with respect to \mathcal{R}** if $\text{AS}(P_1 \cup \mathcal{R}) = \text{AS}(P_2 \cup \mathcal{R})$ for any $\mathcal{R} \subseteq \mathcal{R}$.

- **Note**: If there is no restriction on \mathcal{R}, the notion reduces to strong equivalence [Lifschitz, Pearce & Valverde, 2001].

- **Theorem**: Let B_1 and B_2 be EDPs, that is, logic programs without NAF in heads.

 (LP, B_1, H) and (LP, B_2, H) are **explanatorily equivalent** iff B_1^+ and B_2^+ are strongly equivalent with respect to H, where $B_i^+ = B_i \cup \{ \leftarrow L, \neg L \mid L \in \text{Lit} \}$.
Summary of Results
necessary and sufficient conditions

<table>
<thead>
<tr>
<th>Logic</th>
<th>(A_1=(\mathcal{L}, B_1, H_1)) is more(\mathbf{\underline{\text{explainable}}}) than (A_2=(\mathcal{L}, B_2, H_2))</th>
<th>(B_1 \models B_2) and (A_1) is more(\mathbf{\underline{\text{explainable}}}) than (A_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOL</td>
<td>(\forall X_2 \in \text{Ext}(A_2), \exists X_1 \in \text{Ext}(A_1)) s.t. (X_1 \supseteq X_2)</td>
<td>(\forall E \in H_2 \forall S_E \in \text{BS}(A_2), \exists T_E \in \text{BS}(A_1)) s.t. (E \in H_1) and (T_E \supseteq S_E)</td>
</tr>
<tr>
<td>LP</td>
<td>(\forall S_2 \in \text{BS}(A_2), \exists S_1 \in \text{BS}(A_1)) s.t. (S_1 \supseteq S_2)</td>
<td></td>
</tr>
</tbody>
</table>

- **FOL**
- **LP**
Summary of Results

Computational Complexities

(Propositional Case)

<table>
<thead>
<tr>
<th>Logic</th>
<th>$A_1=(L, B_1, H_1)$ is more</th>
<th>$A_2=(L, B_2, H_2)$</th>
<th>explainable</th>
<th>explanatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOL</td>
<td>Π^P_3-complete</td>
<td>Π^P_3-complete</td>
<td>explainable</td>
<td>explanatory</td>
</tr>
<tr>
<td>LP (general)</td>
<td>Π^P_3-complete</td>
<td>Π^P_3-complete</td>
<td>explainable</td>
<td>explanatory</td>
</tr>
<tr>
<td>LP (ELPs)</td>
<td>Π^P_2-complete</td>
<td>Π^P_2-complete</td>
<td>explainable</td>
<td>explanatory</td>
</tr>
</tbody>
</table>
Abductive Equivalence

- All generality relations are defined to be anti-symmetric, that is, two abductive frameworks are explainably/explanatorily equivalent in the sense of Inoue & Sakama [IJCAI-05] iff one is both more (or equally) and less (or equally) explainable/explanatory than another at the same time.

- With this correspondence, abductive equivalence can be more easily characterized by combining both directions of properties for abductive generality.
Discussion

- **Explainable generality** and **explanatory generality** have the same complexity, and are more complex in general than abductive equivalence.

- Abductive generality can be further characterized with the generality notions in default logic [Inoue & Sakama ICLP’06] and answer set programming [Inoue & Sakama AAAI-07].

- In future work, further parameters can be considered.