

From 3-valued semantics to supported model computation for logic programs in vector spaces

Feb. 22, 2020 Taisuke Sato, AIST Japan (joint work with Chiaki Sakama and Katsumi Inoue)

Why supported models?

- Combinatorial problems:
 - SAT, TSP, planning, scheduling, bioinformatics....
 - Problem: to find a discrete finite solution satisfying constraints
- Solve by:
 - constraint programming (CP), integer linear programming (ILP), SAT, answer set programing (ASP),...
 - ASP:
 - problem = logic program DB
 - solution = stable model of DB
 - BTW searching for supported models looks a good substitute stable models ⊆ supported models

An overview

• Example program DB

$$\begin{split} \mathsf{DB} &= \{ \operatorname{single}(\mathsf{X}) \xleftarrow{} \operatorname{man}(\mathsf{X}) \& \operatorname{not}(\operatorname{husband}(\mathsf{X})), \\ & \operatorname{husband}(\mathsf{X}) \xleftarrow{} \operatorname{man}(\mathsf{X}) \& \operatorname{not}(\operatorname{single}(\mathsf{X})) \} \\ & \operatorname{iff}(\mathsf{DB}) &= \{ \operatorname{s}(\mathsf{X}) \Leftrightarrow \operatorname{m}(\mathsf{X}) \& \operatorname{not}(\operatorname{h}(\mathsf{X})), \\ & \operatorname{h}(\mathsf{X}) \Leftrightarrow \operatorname{m}(\mathsf{X}) \& \operatorname{not}(\operatorname{s}(\mathsf{X})) \} \end{split}$$

 \mathbf{M}_{DB} is a supported model iff $\mathbf{M}_{DB} \models \text{iff}(DB)$

Compute a supported model M_{DB} by
 Step 1: Deterministically compute three-valued model M_{DB}³
 Step 2: Assign {t, f} to undefined atoms in M_{DB}³ appropriately
 while conducting Step 1 and Step 2 in a vector space

by matrix operation for efficiency & scalability

Logic programming semantics in vector spaces: simple case

- DB is a Horn program:
 - taking a transitive closure r2 of r1

r1(a,b), r1(b,c),

 $r_2(X,Z) \leftarrow r_1(X,Z), r_2(X,Z) \leftarrow r_1(X,Y) \& r_2(Y,Z)$

- the least model $\mathbf{M}_{DB} = \{ a: ground atom | DB \vdash a \}$
- We embed the whole task in a vector space
 - DB^g = grounding of DB
 - encode DB^g by binary matrix Q and threshold vector $\pmb{\theta}$
 - represent M_{DB} as binary vector u (true(1),false(0))
 - compute **u** s.t. $\mathbf{u} = (\mathbf{Q}\mathbf{u}) \ge \mathbf{\theta}$ where $(\mathbf{x}) \ge \mathbf{\theta} = (\mathbf{x} \ge \mathbf{\theta} ? 1: \mathbf{0})$

Computing matricized \mathbf{M}_{DB}

 $DB_1 = \{ p \leftarrow q \& r, q \leftarrow r \& s, r \leftarrow q \lor s, s \leftarrow \}$

	р	q	r	S	θ	% threshold
Q = [rogram matrix	U	0 1	1 1 0 0	1	1	% p: AND goal % q: AND goal % r: OR goal % s: fact as s←s
$\mathbf{u}_0 = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$ $\mathbf{u}_{n+1} = (\mathbf{Q}\mathbf{u}_n) \ge \mathbf{\theta}$					% $\mathbf{u}_0(\text{fact})=1$ % $(\mathbf{x}) \ge \theta = 1$ if $\mathbf{x} \ge \theta$, =0 o.w.	
$u_{n+1} = (Qu_n) \ge 0$ $u_{\infty} = [1 1 1]$			1] ^T	% all atoms are true in \mathbf{M}_{DB} % O(N ³) where N = HB		

Hard case: computing supported models

- Supported models of DB with negation
 - may not exist
 - existence of supported model \rightarrow NP-complete
- Naïve strategy
 - non-deterministically assign {**t**,**f**} to atoms to make a supported model

Our strategy

- a ∈ SS iff :- a succeeds by fair SLD refutation
 a is true in all supported models of DB
- a ∈ FF iff :-a finitely fails by fair SLD refutation
 - a is false in all supported models of DB
- Search for supported models by
 Step 1: deterministically compute the least 3-valued model
 M_{DB}³ = (SS,FF) by DB^d (dualized DB)
 → remove nondeterminacy
 - Step 2: non-deterministically assign {t,f} to undefined atoms
 (∉ SS∪FF) to make a supported model

Two supported models


```
a, not(b), c\} \models iff(DB)
a, not(b), not(c)\} \models iff(DB) \leftarrow stable model
```

AIST

Computing SS and FF by DB^d in a vector space

PAST

Compute all supported models of DB

Step-1:

Compute \mathbf{u}_{0}^{d} , \mathbf{u}_{1}^{d} ... by $\mathbf{u}_{i}^{d} = (\mathbf{Q}^{d}\mathbf{u}_{i-1}^{d}) \ge \theta$ and obtain the least fixed point $\mathbf{u}^{d} = (\mathbf{Q}^{d}\mathbf{u}^{d}) \ge \theta$ of DB^d (or use (DG'84) algorithm)

Step-2:

Put *udef* = { a | $\mathbf{u}^{d}(a) = \mathbf{u}^{d}(na) = 0$ } = undefined atoms in \mathbf{M}_{DB}^{3} Find possible assignments of truth values { $\mathbf{t}(1), \mathbf{f}(0)$ } to atoms in *udef* s.t. the resulting interpretation $\mathbf{u} \models \text{iff}(DB)$

Experiment

- program DB: randomly generated 100 clause in {a₁,...,a₁₀₀}
- ini_determined_atom Δ_{ini} : fact(true) \cup no_callee_atom(false)
- new_determined_atom Δ_{new} : (SS \cup FF) $\setminus \Delta_{ini}$ where (SS,FF) = M_{DB}³
- reduction_rate = $#\Delta_{new}/100$

ave. on 10 trials

base atoms {a ₁ ,,a ₁₀ }	used as fact a←	used as tautology a←a
#(SS ∪ FF)	96.5	57.5
<pre>#no_callee_atoms</pre>	3.6	12.4
# A _{new}	96.5 - (3.6+10) = 83.9	57.5 - 12.4 = 45.1
reduction_rate	83.9%	45.1%

83.9% of atoms are removed from search space by the introduction of **Step 1** that computes (**SS**,**FF**) = M_{DB}^{3}

Conclusion

- We logically formulate combinatorial problems in such a way that a solution is a supported model of a logic program DB
- However computing supported models is NP-hard
- We proposed to reduce the search space by computing the deterministic part (SS,FF) separately in Step 1 via DB^d in a vector space
- Our linear algebraic approach is particularly amenable to parallelism supported by GPU and many cores