From 3-valued semantics to supported model computation for logic programs in vector spaces

Feb. 22, 2020
Taisuke Sato, AIST Japan
(joint work with Chiaki Sakama and Katsumi Inoue)

Why supported models?

- Combinatorial problems:
- SAT, TSP, planning, scheduling, bioinformatics....
- Problem: to find a discrete finite solution satisfying constraints
- Solve by:
- constraint programming (CP), integer linear programming (ILP), SAT, answer set programing (ASP),...
- ASP:
- problem = logic program DB
- solution = stable model of DB
- BTW searching for supported models looks a good substitute stable models \subseteq supported models

An overview

- Example program DB

$$
\begin{gathered}
D B=\left\{\begin{array}{c}
\text { single }(X) \leftarrow \operatorname{man}(X) \& \operatorname{not}(\text { husband }(X)), \\
\text { husband }(X) \leftarrow \operatorname{man}(X) \& \operatorname{not}(\text { single }(X))\} \\
\text { iff }(D B)=\{s(X) \Leftrightarrow m(X) \& \operatorname{not}(h(X)), \\
h(X) \Leftrightarrow m(X) \& \operatorname{not}(s(X))\}
\end{array}\right.
\end{gathered}
$$

\mathbf{M}_{DB} is a supported model iff $\mathbf{M}_{\mathrm{DB}} \vDash$ iff(DB)

- Compute a supported model \mathbf{M}_{DB} by

Step 1: Deterministically compute three-valued model $\mathbf{M}_{\mathrm{DB}}{ }^{3}$
Step 2: Assign $\{\mathbf{t}, \mathbf{f}\}$ to undefined atoms in $\mathbf{M}_{\mathrm{DB}}{ }^{3}$ appropriately

- while conducting Step 1 and Step $\mathbf{2}$ in a vector space by matrix operation for efficiency \& scalability

Logic programming semantics in vector spaces: simple case

- DB is a Horn program:
- taking a transitive closure r2 of r1

$$
\begin{aligned}
& r 1(a, b), r 1(b, c) \\
& r 2(X, Z) \leftarrow r 1(X, Z), r 2(X, Z) \leftarrow r 1(X, Y) \& r 2(Y, Z)
\end{aligned}
$$

- the least model $M_{D B}=\{a$: ground atom $\mid D B \vdash a\}$
- We embed the whole task in a vector space
- DB $^{g}=$ grounding of DB
- encode DB by binary matrix Q and threshold vector θ
- represent \mathbf{M}_{DB} as binary vector \mathbf{u} (true(1),false(0))
- compute \mathbf{u} s.t. $\mathbf{u}=(\mathrm{Qu}) \geq \theta$ where $(x) \geq \theta=(x \geq \theta$? 1: 0)

Computing matricized M_{DB}

$$
\mathrm{DB}_{1}=\{p \leftarrow \mathrm{q} \& r, \mathrm{q} \leftarrow \mathrm{r} \& \mathrm{~s}, \mathrm{r} \leftarrow \mathrm{q} \vee \mathrm{~s}, \mathrm{~s} \leftarrow\}
$$

$\begin{array}{llllll}\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s} & \theta & \% \text { threshold }\end{array}$

$$
\begin{aligned}
& Q=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 2 & \% \\
p
\end{array}\right] \text { AND goal } \\
& 2 \text { \% q: AND goal }
\end{aligned}
$$

program matrix

p	q	r	S	θ	\% threshold
$Q=[0$	1	1	0	2	\% p: AND goal
Jram 0	0	1	1	2	\% q : AND goal
trix 0	1	0	1	1	\% r: OR goal
0	0	0	1	1	$\% \mathrm{~s}$: fact as $\mathrm{s} \leftarrow \mathrm{s}$

$$
\begin{aligned}
& \mathbf{u}_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{\top} \quad \% \mathbf{u}_{0}(\text { fact })=1 \\
& \mathbf{u}_{n+1}=\left(Q \mathbf{u}_{n}\right) \geq \theta \quad \%(x) \geq \theta=1 \text { if } x \geq \theta,=0 \text { o.w. } \\
& \mathbf{u}_{\infty}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]^{\top} \quad \% \text { all atoms are true in } \mathbf{M}_{D B} \\
& \% \mathrm{O}\left(\mathrm{~N}^{3}\right) \text { where } \mathrm{N}=|\mathrm{HB}|
\end{aligned}
$$

Hard case:

computing supported models

- Supported models of DB with negation
- may not exist
- existence of supported model \rightarrow NP-complete
- Naïve strategy
- non-deterministically assign $\{\mathbf{t}, \mathrm{f}\}$ to atoms to make a supported model

Our strategy

- $a \in S S$ iff :-a succeeds by fair SLD refutation
- a is true in all supported models of DB
- a \in FF iff :-a finitely fails by fair SLD refutation
- a is false in all supported models of DB
- Search for supported models by

Step 1: deterministically compute the least 3-valued model

$$
\begin{aligned}
\mathrm{M}_{\mathrm{DB}}{ }^{3} & =(\mathbf{S S}, \mathrm{FF}) \text { by DB } \mathrm{DB}^{d} \text { (dualized DB) } \\
& \rightarrow \text { remove nondeterminacy }
\end{aligned}
$$

Step 2: non-deterministically assign $\{t, f\}$ to undefined atoms (\notin SSUFF) to make a supported model

Two supported models

$D B:$
$a \leftarrow \operatorname{not}(b)$
$c \leftarrow a \& c$
iff(DB):
$\mathrm{a} \Leftrightarrow \operatorname{not}(\mathrm{b})$
$b \Leftrightarrow$ false
$c \Leftrightarrow a \& c$

$\{a, \operatorname{not}(b), c\} \vDash i f f(D B)$
$\{\mathrm{a}, \operatorname{not}(\mathrm{b}), \operatorname{not}(\mathrm{c})\} \vDash \mathrm{iff}(\mathrm{DB}) \leftarrow$ stable model

Computing SS and FF by DB $^{\mathrm{d}}$ in a vector space

DB:
$\mathrm{a} \leftarrow \operatorname{not}(\mathrm{b})$
$c \leftarrow a \& c$

undefined
atoms
\{c \}

D^{d} :
$\mathrm{a} \leftarrow \mathrm{nb}$
$c \leftarrow a \& c$
$n a \leftarrow b$
$\mathrm{nc} \leftarrow \mathrm{na} v \mathrm{nc}$ $\mathrm{nb} \leftarrow$

$$
\mathbf{u}^{d}=\left(Q^{d} \mathbf{u}^{d}\right) \geq \theta \quad \Rightarrow \mathbf{M}_{D B}^{d}=\{a, n b\} \quad D B^{d} \vdash a, n b
$$

Compute all supported models of DB

Step-1:
Compute $\mathbf{u}^{\mathrm{d}}{ }_{0}, \mathbf{u}^{\mathrm{d}}{ }_{1} \ldots$ by $\mathbf{u}^{\mathrm{d}}=\left(Q^{\mathrm{d}} \mathbf{u}^{\mathrm{d}}{ }_{\mathrm{i}-1}\right) \geq \theta$ and obtain the least fixed point $\mathbf{u}^{d}=\left(Q^{d} \mathbf{u}^{d}\right) \geq \theta$ of D^{d} (or use (DG'84) algorithm)

Step-2:
Put udef $=\left\{\right.$ a $\left.\mid \mathbf{u}^{d}(a)=\mathbf{u}^{d}(n a)=0\right\}=$ undefined atoms in $\mathbf{M}_{D B}{ }^{3}$
Find possible assignments of truth values $\{\mathbf{t}(1), \mathbf{f}(0)\}$ to atoms in udef s.t. the resulting interpretation $\mathbf{u} \vDash i f f(D B)$

Experiment

- program DB: randomly generated 100 clause in $\left\{a_{1}, \ldots, a_{100}\right\}$
- ini_determined_atom $\Delta_{\text {ini }}$: fact(true) Uno_callee_atom(false)
- new_determined_atom $\Delta_{\text {new }}:(\mathbf{S S} \cup F F) \backslash \Delta_{\text {ini }}$ where $(\mathbf{S S}, F F)=\mathbf{M}_{\mathrm{DB}}{ }^{3}$
- reduction_rate $=\# \Delta_{\text {new }} / 100$
ave. on 10 trials

base atoms $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{10}\right\}$	used as fact $a \leftarrow$	used as tautology
\#(SSUFF)	96.5	57.5
\#no_callee_atoms	3.6	12.4
$\# \Delta_{\text {new }}$	$96.5-(3.6+10)=83.9$	$57.5-12.4=45.1$
reduction_rate	83.9%	45.1%

83.9\% of atoms are removed from search space by the introduction of

Step 1 that computes (SS,FF) $=\mathbf{M}_{D B}{ }^{3}$

Conclusion

- We logically formulate combinatorial problems in such a way that a solution is a supported model of a logic program DB
- However computing supported models is NP-hard
- We proposed to reduce the search space by computing the deterministic part (SS,FF) separately in Step 1 via DB ${ }^{d}$ in a vector space
- Our linear algebraic approach is particularly amenable to parallelism supported by GPU and many cores

