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According to the World Health Organization (WHQ), the world is going
hungry. WHO data shows that in 2018, the most recent year for which data is
available, 820 million people lacked enough food to eat, an increase of nine
million people over the year before.

Hunger kills plenty of people worldwide. It also impacts those who
survive, causing serious childhood development issues like stunting, where
children are too short for their age, and wasting, where they’re too thin for
their age.

The explosion in our planet's population is a major factor in there not
being enouéh food to go around. Since 1950, the global population has grown
from 2.6 billion people to almost eight billion people in 2021, according to the
United Nations. That growth is continuing apace®, with the world’s population
estimated to increase by another two hillion people by 2050.

To solve problems such as explosive population growth, new solutions are
required.

Artificial intelligence (AI) is one of those solutions. Al systems —
including machine learning and deep learning systems — are increasingly using
large datasets and robust* computer science techniques to improve crop
yields*, boost farm productivity, and prevent disease ( 2 ) destroying
crops.

The result is what Ananth Kalyanaraman calls a “revolution” in
agriculture. Kalyanaraman is the director of the USDA-NIFA Institute for
Agricultural Al for Transforming Workforce ‘and Decision Support at
Washington State University, a research institute dedicated to { 3 ) Al to
solve tough agricultural problems. Known familiarly as the AgAID Institute, it
is one of 11 Al-focused research institutes launched by the National Science
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Foundation (NSF) to figure out how AI, machine learning, deep learning, and
other next-generation technologies can solve hunger issues worldwide.

The AgAID Institute is funded by the U.S. Department of Agriculture's
National Institute of Food and Agriculture. Federal investment in outfits® like
AgAlD signals that the war on hunger will not be won by people alone; it will

{5
be won through a creative combination of human and artificial intelligence.

A key application of Al in agriculture is the use of intelligent and
autonomous robaots, says George Papakostas, a professor in the Department of
Computer and Informatics Engineering of the Eastern Macedonia and Thrace
Institute of Technology, Greece, and an acknowledged expert on the use of
computer vision in agriculture. *“Agrobots” use computer vision to execute
agricuitural tasks like planting and harvesting without human supervision®.
They increase crop yields by working both faster and longer than humans,

“Agrohots are able to make decisions hased on the knowledge they have
acquired through the training process with big data and to perform tasks
seamlessly with precision and speed,” says Papakostas.

These robots are not just better at such agricultural jobs than humans;
they also do jobs humans don't want. “The lack of experienced and specialized
staff [in the agricultural sector] due to urbanization” is a huge problem, says
Papakostas, who adds that autonomous robots directed by Al can address this
problem by providing a workforce able to plant, weed, and harvest 24 hours a
day, seven days a week.

Automation is one area where Al makes agriculture better able to feed the
world’s hungry people. Prediction is another.

Al is used to detect and predict diseases in crops. Al techniques process
the data received from Internet of Things (IoT)*, sensors that monitor
climatic, envirommental, and visual information from the surface, soil, and
microclimate™ of crops. This data is then used to train deep learning models
that can forecast the likelihood of disease developing in certain types of crops,
says Papakostas.
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The result? Intelligent crop disease surveillance® systems that make it
much easier to predict yields and spot diseases before they wipe out entire
crops in which farmers have invested a fortune, says G((Zi)rge Kanior, a
researcher at the Robotics Institute of Carnegie Mellon University.

“Early disease detection capabilities can feed into* precision spraying
equipment for targeted application of th.e necessary treatment,” says Kantor.
“This can dramatically reduce chemical inputs used by farmers, which both

saves on production costs and reduces environmental impact.”

Al  also )[(7) further ) go @) it () makes ) one step
3

() possible ) to] in disease prevention: we no longer need to grow certain

crops to predict what could affect them, says James Schnable, an associate
professor and Dr. Charles O. Gardner Professor of Agronomy in the
Department of Agronomy & Horticulture at the University of Nebraska-Lincoln.
“I'm most excited about the development and deployment of digital twins:
virtual counterparts of real-world plants that allow us to (::?)Inel'iment and
predict how plants will respond in different environments,” he says.

Schnable’s work on digital twins also is funded by the NSF. These virtual
creations allow farmers to game out* the ouicomes of different crop
management decisions, such as when to apply fertilizer* or how much
irrigation™ water to use. Digital twins help farmers both increase current crop
efficiency and anticipate future growing conditions before they become a
problem. .

This is important because today’s plant breeders® are producing
tomorrow's crops.

“A plant breeder working today is developing new varieties for farmers to
grow in 2030, says Schnable. “Yet, we don't have access to the environments
of Nebraska in 2030, or Rwanda in 2030. In order to overcome this challenge,
we need to be able to predict how crop varieties will perform in environments
that won't exist for another 10 to 15 years. That’s where artificial intelligence

and machine learning come in.”
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Despite general crop yield gains, says Schnable, field tests are still needed
to determine which crops will grow best using which methods in certain areas.

“Field tests conducted in Missouri won't predict which crop varieties have
the potential to be the most resilient* or produce the most yield in Nebraska,”
he says. “Field tests conducted in Kenya won’t predict which crop varieties
have the potential to be the most resilient or produce the most yield in
Rwanda.”

Al and machine learning models are critical to simulating different
conditions at scale®.

One application of this principle may be seen in work heing done by
Timothy Smith and Zhenong Jin at the University of Minnesota. In their most
recent paper, the two researchers huilt a series 61" machine learning prediction
models regarding the Corn Belt of the U.S,, the premier corn-producing area of
the country. The predictions simulated sustainability conditions across farms,
( 11 ) farmers to identify problem areas that reduce crop health, output,

and yields.
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(7) Due to significant advances in virtual plants, or digital twins, Al can
predict which crops grow best, making field tests unnecessary now.
1) Kenya and Rwanda are famous for producing corn.
(&) Intelligent and autonomous robots not only work faster and longer than
humans but also do jobs that humans are reluctant to do.
() The AgAID institute claims that Al can solve the problem of world
hunger without the help of humans.
¢f) The combination of Al and IoT can predict the probability of disease in
certain types of crops.
(4 The two main areas where Al makes agriculture better are breeding and

genetic engineering.
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It is almost impossible for most of us to imagine growing up without

language — which develops in our minds so effortlessly in early childhood and
(0

plays such a central role in defining us as human. Nevertheless, being

deprived of languag;e occasionally happens in some exceptional circumstances.
In recent centuries 2<):hi1dren have been found living in the wild, reportedly
raised by wolves or other animals and deprived of human contact. One of the
most famous cases is that of Victor, the ‘wild boy of Aveyron*', immortalized®*
in a film by Francois Truffaut called The Wild Child (L’Enfant Sauvage) *.

It is hard to know the real stories behind these cases, but they are all
strikingly similar)with respect to language. The pattern from all these cases is
that only those (:l%escued early in childhood developed any fluency or grammar,
Those found after about nine years of age learned only a few words or failed to
learn language at all.

We also know cases in which children grew up in social or linguistic
isolation because of tragic family circumstances. One of the best-known of
these is the case of Genie, whose childhood was one of extreme neglect,
deprivation, and abuse. For over twelve years, her father shut her away in a
small bedroom, tied with a harness* to an infant potty™ seat. When her blind
mother finally escaped with Genie in the early 1970s and applied for welfare,
the police intervened, and Genie was put in the rehabilitation ward* of a
childrex1’s(4i1051)ital. She was thirteen and a half years old and knew no
language.

Genie was studied by linguists and other professionals for almost a
decade, She was of normal intelligence; she rapidly learned words within a few
months after her discovery, and soon began to combine them. However, she
failed to use grammatical elements like tense or agreement markers, articles,
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pronouns, or question words —the pieces of English that turn a string of
words into grammatical speech. Most of her linguistic development consisted
of learning more words and stringing them together into longer, semantically*
coherent utterances. In context, she could make herself understood. However,
(S)her speech did not adhere to standard English subject-verb-object word order.

She appeared 1o comprehend more than she could produce, but even after

many years, she developed little knowledge of grammar. Interestingly, Genie
(6

was a powerful nonverbal communicator, providing strong evidence that

language is not the same as communication.

In contrast, [(7) are &) as (% as (¥ children without hearing

(7
¢} handicapped (% not] Genie. They can develop language and relate

normally to others throﬁgh signing —as long as language development starts
early. There are a number of studies that show that the sooner a deaf child is
exposed to a natural sign language, such as American Sign Language, the
more proficient a signer he or she will become. As in other cases of linguistic
isolz(l?ion, the ability of deaf people to learn new words is not affected by the
age at which they are exposed to language. But their ability to learn grammar

is dramatically affected. Studies of deaf children first exposed to sign

language after the pre-school years show that there is a critical window for

grammalical development, which ends, perhaps, in the early school-age years.

Exciting evidence that a child brings something unique and necessary to
language development comes from the creation of a new sign language in
Nicaragua. After the Sandinista*® movement came to power there in 1979, for
the first time deaf teenagers and adults had the opportunity to form a Deaf
community (Deaf with a capital ‘D' indicates the connection to Deaf culture
and identity; deaf with a small ‘d’ refers to hearing loss not connected to Deaf
identity).

This first generation created am)rudimentary system of gestures for

communication. But when young children, under the age of ten, joined this
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community, they transformed this system into a real language, embodying the
structural elements and characteristics that define all human grammars. Over
a very few years, that language has become increasingly rich and complex
grammatically.

Like other cases of linguistic isolation after early childhood is the case of
Chelsea, a deaf woman from a loving, hearing family who used no signs.
Chelsea was first exposed to language (signed and spoken English) in her
thirties. She is normal psycho-socially, reflecting her loving family, but despite
decades of teaching and exposure, she learned only ( 11 ) and never
de.veloped any ( 12 ) atall

Provocatively ®, grammar acquisition may be crucial for triggering normal
organization of higher cognition* in the brain. Genie, Chelsea, and other late
learners of a first language failed to develep a normal pattern of neural®
organization for language and other mental [aculties, suggesting a crucial role
for grammar, perhaps the trigger for the way the brain organizes cognition in

humans.
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Hi81 @ Curtiss, Susan, “What Happens If You Are Raised Without Language?”
The Five-Minute Linguist: Bite-Sized Essays on Language and Languages,
Third Edition, ed. by Myrick Caroline and Walt Wolfram, 65-67,
Equinox, 2019, (—¥igk%)
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7} a considerable amount of experience which has a negative effect on
children’s grammatical development

“} a crucial period of time in which children can acquire the grammar of a
language, after which further grammatical development becomes much
more difficult

&) a limit to the number of grammatical concepts that children can acquire
at a certain period of their development

(¥} an important stage when children feel worried about correct
grammatical usage
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(7) Chelsea did not start learning language until her thirties.

(1) Genie's knowledge of subject-verb-object word order became that of a
mature native speaker.

) Genie spent her days physically restrained but exposed to language.

(¥} Late learners of a first language have the same neural organization for
language as those who acquire the language at a normal age.

) Like people who are raised without language, deaf people can learn new
words regardless of the age at which they are exposed to language.

1) The ability to learn grammar is affected by intelligence,

&) Young deaf people who had begun learning a sign language in a Deaf

communily managed to develop it into a grammatically rich language.
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