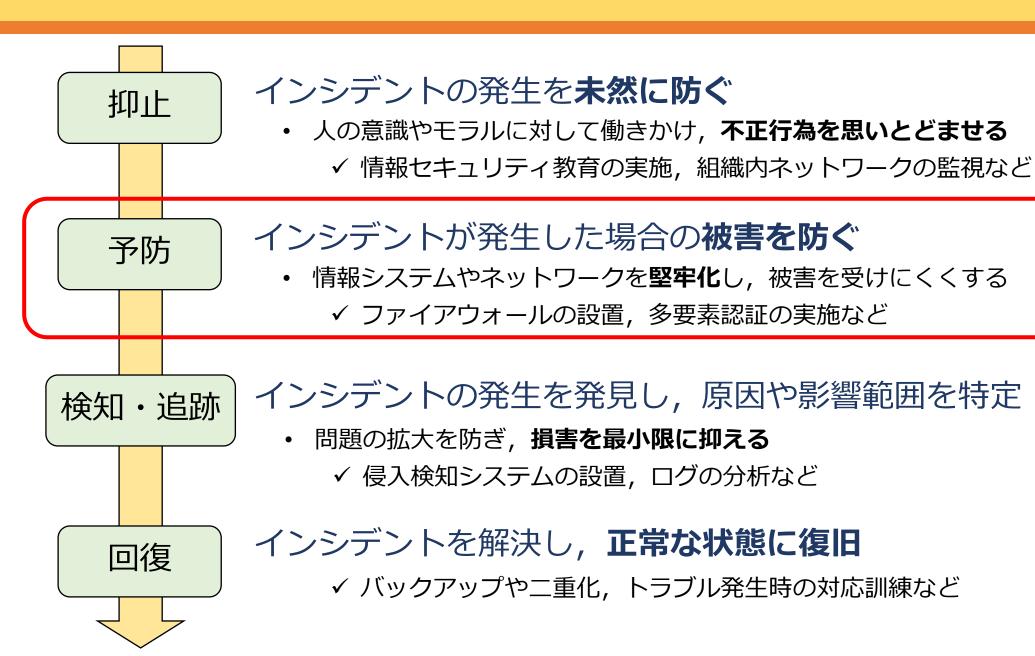
情報セキュリティ基礎

第7回 攻撃の検知と防御

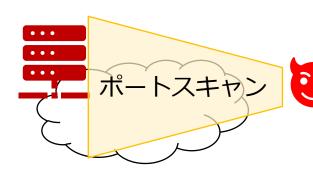

藤本 章宏

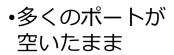
今回の目標

•ファイアウォールやIDS/IPSの仕組みを知る

それぞれのセキュリティ製品でできることと できないことを理解する

情報セキュリティ対策


ホストの堅牢化 (要塞化)


OS / ソフトウェアのバグや設定ミス等によって発生する セキュリティホールを塞ぐこと

- ✓ OSやソフトウェアのバージョンを最新化
- ✓ セキュリティパッチの適用
- ✓ 不要なサービスや機能の停止

堅牢化の重要性

容易に侵入できないと思わせ, 攻撃を思いとどまらせる

サーバのバージョン が古い

侵入しやすそう

- •開いているポートは最低限
- •得られる情報も最小限

セキュリティ意識が高く, 侵入が難しそう

ホストの堅牢化における検討事項

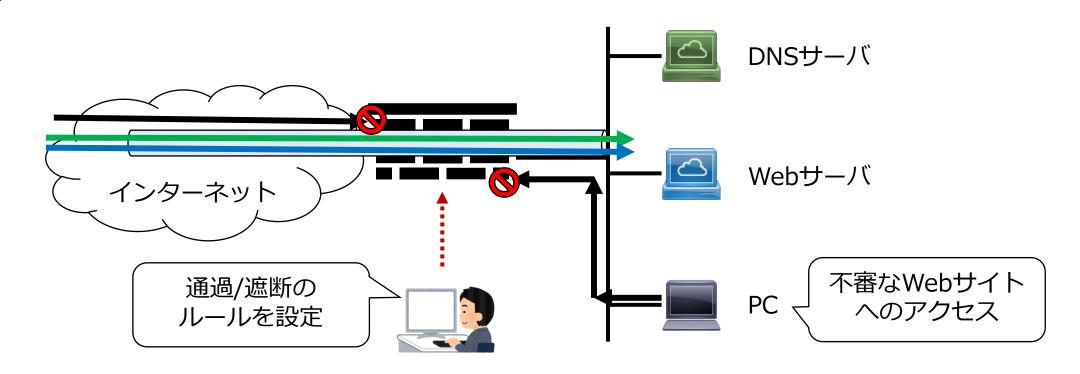
原則として「最小限」を考える

- ・最小限のサービスを運用
 - ✓ 最小構成でOSをインストール
 - ✓ 不要なサービスや機能を停止
 - ✓ 不要なエラーメッセージを返さない
- 権限を持ったユーザを最小限に
 - ✓ 不要なアカウントの削除
 - □ 利用するユーザアカウントについてもセキュリティ対策
 - ✓ 複雑なパスワードや, アカウントのロックアウト
 - ✓ ディレクトリやファイルには適切なアクセス権を設定

攻撃の予防・検知・防御

名称	特徴				
ファイアウォール	主にIPアドレスやポート番号を使って設定されたルールに従って パケットを通過/遮断				
ネットワーク型IDS (Intrusion Detection System)	ネットワーク中を流れるパケットを監視し, 通信の特徴を見て攻撃を検知				
ホスト型IDS	インストールされたコンピュータを監視し, ログインの成功/失敗などの発生しているイベントから攻撃を検知				
IPS (Intrusion Protection System)	ネットワーク型IDSと同等の機能に加え,実際に通信を遮断				
ホスト型IPS	ホスト型IDSの機能に加え,攻撃を遮断				
WAF (Web Application Firewall)	クロスサイトスクリプティング,SQLインジェクションなど, Webアプリケーションへの攻撃を検知・遮断				
サンドボックス	セキュアな仮想環境で実際にファイルやリンク先へアクセスし, その結果を見て攻撃を検知				

ファイアウォール


ネットワークセグメント間において,ルールに基づきパケットを破棄

- ✓送信元IPアドレス
- ✓宛先ポート番号

アクセス制御リスト (ACL; Access Control List)と呼ばれる

注意点

通信速度を保つためには、十分な処理能力を持つFWが必要

FWのフィルタリング方式

ステートフルインスペクション(≒動的パケットフィルタ)

- ✓ 通信開始時に、必要なルールを動的に設定
- ✓ 通信状態を監視し、不自然なパケットが見つかると破棄

動作例

- ① 通信要求がFWに到着
- ② 許可されたセッションはセッション管理用テーブルに登録 通信用のルールを自動生成

	方向	送信元 アドレス	死先 アドレス	送信元 ポート	宛先ポート	プロト	アク ション
Webへの	Out	内部NW	ANY	ANY	80	TCP	許可
アクセス	Out	内部NW	ANY	ANY	443	TCP	許可

A:36812 → W:80 許可 W:80 → A:36812 許可

Web

SYN

アドレス: A ポート: 36812

アドレス: W ポート: 80

FWで防御できない攻撃

基本的には、ACLに書かれたルールに従うアクセス制御

- → ルールに則った通信は通してしまう
- 正規のアクセスに見える攻撃
 - ✓ (許可しているポートへの) ポートスキャン
 - ✓ パスワードクラック
 - ✓ Webアプリケーションへの攻撃(クロスサイトスクリプティング等)
- DDoS攻撃(多数の接続元からの攻撃)
 - ✓ 全ての攻撃元をルールに追加することは不可能
- マルウェアの侵入
 - メールへの添付, Webサイトからのダウンロード等は (完全には) 防げない

IDS (Intrusion Detection System)

発生している事象をリアルタイムに監視し,侵入や攻撃を検知

ネットワーク型侵入検知システム(NIDS) ネットワークを流れるパケットをリアルタイムに監視

ホスト型侵入検知システム (HIDS)

ホスト内で発生するイベント(不正な操作,ファイルの改ざん等) をリアルタイムに監視

WAF (Web Application Firewall)

Webアプリケーションに特化したIPSのような働き

✓典型的にはシグネチャのパターンマッチング

製品によって,様々な形で提供

- ✓ クラウド型
- ✓ アプライアンス型
- ✓ ソフトウェア型

クラウド型

- ✓ DNSの設定だけで済むので導入が容易
- ✓ DDoS対策とセットになっていることも
- ✓ カスタマイズはしづらい

ソフトウェア型

- ✓ Webサーバやリバースプロキシにインストール
- ✓ 比較的安価

インターネット

IPS

リバース

プロキシ

Web

アプライアンス(専用機器)型

- ✓ 負荷分散や暗号化機能を備えた機種も
- ✓ 比較的高価. 大規模なサイト向け